15 research outputs found

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus

    Activation of transcription factors by extracellular nucleotides in immune and related cell types

    Get PDF
    Extracellular nucleotides, acting through P2 receptors, can regulate gene expression via intracellular signaling pathways that control the activity of transcription factors. Relatively little is known about the activation of transcription factors by nucleotides in immune cells. The NF-κB family of transcription factors is critical for many immune and inflammatory responses. Nucleotides released from damaged or stressed cells can act alone through certain P2 receptors to alter NF-κB activity or they can enhance responses induced by pathogen-associated molecules such as LPS. Nucleotides have also been shown to regulate the activity of other transcription factors (AP-1, NFAT, CREB and STAT) in immune and related cell types. Here, we provide an overview of transcription factors shown to be activated by nucleotides in immune cells, and describe what is known about their mechanisms of activation and potential functions. Furthermore, we propose areas for future work in this new and expanding field

    The inflammatory effects of UDP-glucose in N9 microglia are not mediated by P2Y14 receptor activation

    Get PDF
    In this study we evaluated the functionality and inflammatory effects of P2Y14 receptors in murine N9 microglia. The selective P2Y14 receptor agonist UDP-glucose (UDPG) derived from microbial sources dose dependently stimulated expression of cyclooxygenase-2 and inducible nitric oxide synthase, and potentiated the effects of bacterial lipopolysaccharide on nitric oxide production. However, another selective P2Y14 receptor agonist, UDP-galactose, did not affect these endpoints either alone or in combination with lipopolysaccharide. Interestingly, synthetic UDPG also had no detectable pro-inflammatory effects, although P2Y14 receptors are both expressed and functional in N9 microglia. While synthetic UDPG decreased levels of phosphorylated cyclic AMP response element binding protein, an effect that was blocked by pertussis toxin, the pro-inflammatory effects of microbial-derived UDPG were insensitive to pertussis toxin. These data suggest that the pro-inflammatory effects of microbial-derived UDPG are independent of P2Y14 receptors and imply that microbial-derived contaminants in the UDPG preparation may be involved in the observed inflammatory effects

    Uncertainty of protein-ligand binding constants: asymmetric confidence intervals versus standard errors

    No full text
    Equilibrium binding constants (Kb) between chemical compounds and target proteins or between interacting proteins provide a quantitative understanding of biological interaction mechanisms. Reporting uncertainties of measured experimental parameters are critical for decision making in many scientific areas, e.g., in lead compound discovery processes and in comparing computational predictions with experimental results. Uncertainties in measured Kb values are commonly represented by a symmetric normal distribution, often quoted in terms of the experimental value plus-minus the standard deviation. However, in general the distributions of measured Kb (and equivalent Kd) values and the corresponding free energy change DeltaGb are all asymmetric to varying degree. Here, using a simulation approach, we illustrate the effect of asymmetric Kb distributions within the realm of isothermal titration calorimetry (ITC) experiments. Further we illustrate the known, but perhaps not widely appreciated, fact that when distributions of any of Kb, Kd and DeltaGb are transformed into each other their degree of asymmetry is changed. Consequently, we recommend that a more accurate way of expressing the uncertainties of Kb, Kd, and DeltaGb values is to consistently report 95% confidence intervals, in line with other author’s suggestions. The ways to obtain such error ranges are discussed in detail and exemplified for a binding reaction obtained by ITC

    Lack of a Functioning P2X7 Receptor Leads to Increased Susceptibility to Toxoplasmic Ileitis

    Get PDF
    BackgroundOral infection of C57BL/6J mice with the protozoan parasite Toxoplasma gondii leads to a lethal inflammatory ileitis.Principal findingsMice lacking the purinergic receptor P2X7R are acutely susceptible to toxoplasmic ileitis, losing significantly more weight than C57BL/6J mice and exhibiting much greater intestinal inflammatory pathology in response to infection with only 10 cysts of T. gondii. This susceptibility is not dependent on the ability of P2X7R-deficient mice to control the parasite, which they accomplish just as efficiently as C57BL/6J mice. Rather, susceptibility is associated with elevated ileal concentrations of pro-inflammatory cytokines, reactive nitrogen intermediates and altered regulation of elements of NFκB activation in P2X7R-deficient mice.ConclusionsOur data support the thesis that P2X7R, a well-documented activator of pro-inflammatory cytokine production, also plays an important role in the regulation of intestinal inflammation
    corecore